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AbslrscL We mnsider toppling distributions for Ule Abelian sandpile model in one 
dimension. We study the avalanche mass and duration dislributions in Ule thermodynamic 
limit. We also invesligate their dependence on the seeding distribution, which describes 
how sand iS dropped. None of the models shows aiticalily. 

Over the past few years, sandpile models have received much attention as they are 
among the simplest models showing self-organized criticality (SOC). The concept 
of soc was introduced by Bak, lhng and Wiesenfeld as an attempt to explain 
the occurrence of power law in various and many natural phenomena [I]. These 
authors suggested that the dynamics involved may be such that it drives the system 
to criticality, without the adjustment of any parameter. In some sense, critical points 
would be attractors for the dynamics. 

Sandpile models are discrete models defined on a lattice and possess a cellular 
automaton type of dynamics. A general analysis of the critical height models was 
undertaken by Dhar [2]. He showed that the sandpile automaton features an Abelian 
group (hence the name Abelian sandpiles) and obtained a simple characterization of 
its critical state. Intensive numerical study, mainly of twodimensional models, has 
provided much numerical data, including critical exponents [3-71. On the theoretical 
side, much progress has been done and exact (though partial) results are available 
[2,&11]. They show that in dimension d 2 2, the sandpile models are Critical, in 
the restricted sense that they exhibit power laws. In one dimension, the soc state 
(we keep the  name although the model does not show criticality) is simple enough 

this letter that the toppling distributions, though not critical, are not trivial. 
We consider a linear chain Of length L,  with sites numbered 1 to L.  lb each site 

i, we assign a variable ii taking the values 0 and 1. (zi is the ‘height’ of the sandpile 
at i.) A stable configuration C is a set of values zi ,  i = 1 ,  ... , L .  We denote by S 
the space of all stable configurations, in number equal to 2=. The dynamics of the. 
m=.’r! k defi.7ed as b!!GV,5. 

(i) With probability p , .  add a ‘grain of sand’ at site j ,  that is : j  - z, + 1 and 
zi - zi for i # j. 

(ii) If some site i has ii 2 2, it is critical and topples. In doing so, its 
height is reduced by two units of sand and each of its neighbours receives one 

10 aiiow vev expiick aicu;aiions. mrteiaiion ~unciions are iriv;ai, we show in 
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unit: zi + zi - 2 ,  zi*l + + 1, zk + zk  if k # i, i f 1. When all the critical 
sites have toppled, we are left with a new stable configuration. 

Note that under toppling, the quantity of sand is conserved, except if one of either 
end sites topples. In that case a grain of sand falls off the lattice. A toppling matrix 
A is usually introduced which specifies the way sand ir, redistributed when a toppling 
occurs: under toppling of site i ,  zk -+ zL - Aik.  In our case, 

{: otherwise 

i f i = k  
Aik = -1 if ( i -  kl = 1 (1) 

which is nothing but the discrete Laplacian in one dimension. It is also convenient to 
define operators ai,  j = 1, ... , L,  which carry out the two aforementioned steps: n j  
adds one grain at site j and let the configuration relax to a new stable configuration. 
(The a j  generate the Abelian group alluded to earlier.) 

When the dynamics is applied to some initial configuration, only the recurrent 
configurations keep occurring. They are those configurations which are obtained by 
acting with all the a j  on the configuration c' = {q = 1 for all i}. We denote by R 
the space of recurrent configurations. The soc state of the sandpile is the stationary 
state: it assigns a zero probability to a non-recurrent configuration, and is a uniform 
distribution on R [2]. 

Each time one of the operators a j  is applied, a certain number of topplings take 
place before we return to a stable configuration. In addition the avalanche takes 
some time before it settles down. These two quantities, the mass and the duration of 
an avalanche, are random numbers. Here we compute their probability distribution 
in the soc state. 

For the one-dimensional sandpile model, the space R can be very explicitely &+en: 
it has cardinality L + 1 and contains all the configurations with at most one height 
equal to 0. They can be all written as aL+'-'C' G nf'+'-'c',  with 0 < 1 < L. The 
configuration C L ~ + ~ - ' C '  has no 0 if 1 = 0 ( a L + l C  = C), and has one 0 at position 
I otherwise: 

zi(flL+l-Ic) = 1 - 6 .  ( , I  l < i <  L .  (2) 

Seeding at site j is implemented by the operator aj. and satisfies n j  = a{ = a', 
so that the group generated by the a j  is cyclic of order L + 1. Because each Of 
the recurrent configurations has probability 1/( L + 1) in the SOC state, it is a trivial 
matter to obtain the correlation functions (il # i, # - .  # i,) 

Following Creutz [9], we define the quantity Ti j (C) ,  which is the number of 
topplings occurring at site i during the relaxation of ajC.  Tij(C) satisfies the 
following equation, valid for any stable configuration C [9] 

' ; ( a J C )  = z i ( C )  + 6i,j -A;,  Tkj (C) .  (4) 

For C = a L + l - ' C  in R, by using (2) and the inverse (A-')ij = min(i , j )  - 
ij/( L + 1). we obtain the following explicit form of Tij( C), symmetric in i and j: 
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T..(aL+l-'C') 
23 

m i n ( i , j ) + m i n ( i + j , 1 ) - ; - j  i f i , j < l  
min(i , j )  + min(i + j , L  + 1 - 1 )  - ( i  + j  + 1 )  if i , j  > 1 (5) 

, =(, otherwise. 

Let S be the random variable counting the number of topplings (or mass of the 
avalanche) per added particle, computed in the space of recurrent configurations. 
The probability to observe exactly s topplings when one grain of sand is dropped 
randomly, with a uniform distribution ( p j  = 1 / L )  is given by 

From (S),  we obtain the total number of topplings when aL+'-'c' relaxes 

It is clear from (7) that Prob[S  = S ]  will strongly depend on the factorization 
properties of s. We obtain from (6) and (7) 

for s = 0 
1 

[ Z c a r d { d : d I s a n d d + s / d ~ L )  (8) 
L ( L  + 1) 

+card { d  : d I s and d + s / d  = L + 111. 
Prob [S = S ]  = 

The value a t  s = 0 is clear since there are L configurations which do not produce 
any toppling at all if their zero-height site is seeded. We note that the value s = 0 is 
always more likely than any other value. Let us also note that the maximal value of 
SiS 

This maximum is reached when the minimally stable configuration c' is seeded at  
its centre, or at one of the two most central sites if L is even. 

The moments of S are easily computed. The first two read 

( S )  = ( L + l ) ( L + Z )  
12 

( L + l ) ( L + 2 ) ( 2 L 2 + 4 L + 9 )  
180 (SZ) = 
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while the others can he computed in terms of the Bernouilli polynomials, with leading 
term 

(11) 
(m!)' 

( m  + l ) (2m + l ) !  
(S") = L'" + O( L'm-1) m 0. 

Let us now consider the infinite-L limit of the renormalized random variable 
S/L". If Q > 2 or a < 2, the distribution of the renormalized variahle'is trivial, 
being a delta function at zero or at infinity respectively. For a = 2 however, the limit 
is non-trivial. Let us define Y = IimL-- S/L'. From (9) and ( l l ) ,  it is clear that 
Y is a continuous random variable taking its values between 0 and i ,  and that all its 
moments are finite: 

By Carleman's theorem 1121, the moments (12) define a unique probability 
distribution. 

It is straightforward to compute the density function of Y. The characteristic 
function is 

from which the density function f,(y) (corresponding to uniform seeding) is 
recovered by inverse Fourier transform 

The function f, has a logarithmic singularity at y = 0, a remnant of the high 
probability of observing no toppling at all. At y = i ,  fu( y)  vanishes like a square 
root f,(y) - w. The shape of fu is pictured in figure 1. 

Table 1. Density functions for the avalanche m a s  and duration dislribulions in the 
lhermadynamic limir, depending on the seeding distribution. ?he functions are zero 
outside the range shaved on the lop line. 

Seeding dist. Avalanche mass (0 < y < $) Duration (0 6 f < I) 

g d t )  = 2f 
I + -  
I - -  Uniform f " ( Y )  = 2log 

Binomial f b ( Y )  = 4b( t )  = 21L+,11(f) 

Quadralic gp(t) = 6t - 12t* + 813 

One may wonder whether the asymptotic distribution (14) is robust with respect to 
the seeding distribution y j .  In order to investigate this question, we repeat these steps 
for other distributions. The moments of S can be given in all generality. From (7), 
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Figures 1 and Z Grnphs of Ihe toppling distributions in the soc state, namely the 
avalanche mass (left) and the avalanche dlrralion (right), as given in able 1. ?he thick 
full NNeS relate to the uniform seeding distribution, the thin full mwes lo the quadratic 
and Ihe hokeen lines to Ihe tinomial. 

they can be written as an expectation value with respect to the seeding distribution 
p j ,  provided this one is independent of the configuration being seeded: 

1 
(S") = (L+I)(m+l)("+l(L+ l - j ) + ( L +  l - F B m + l ( j +  1) 

- j m B m + ~ - ( L + l - j ) m B , a + i ) u e d i n g  ( 1 9  

where B,+,(z) = zm+' + ... is the (m + 1)th Bernouilli polynomial and E,,, = 
B,+,(O) is the (m + 1)th Bernouilli number [13]. 

We will use the same method as for the uniform seeding distribution. The 
expression (15) is usually a polynomial in L (in the limit of large L) ,  of which 
we pick out the highest power, which is L2" if the kth moment of pj scales like 
L,. We set (jl')wding = a ,Lk  + O( Lk-l) and ( S " )  = c, L'" + (7( LZ"-'). In 
addition to the uniform distribution p ,  = 1 f L ,  we consider the following two: the 
binomial distribution, which gives more weight to the centre of the lattice, and a 
centred quadratic distribution, which, on the contrary, privileges the two edges. We 
include the earlier data about the uniform distribution: 

uniform: 
B ( m  + 1, m + 1) 

c, = 1 a ,  = - 1 p.  = - 
J L  k + l  m + l  

binomial: 
4-"* 

c, = - 
m + 1 

L - 1  

quadratic: 

6 B ( m + 2 , m + 2 )  
c, = 

( m + l ) z  
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where B(m + 1, n + 1) = m!n!/(m + n + l ) !  is the Euler beta function. 
In all three cases, we define the renormalized variable Y = IimL-- S /L2 .  

Clearly, the moments of Y are just the coefficients c, displayed in (16), (Y") = cm. 
In each case, we compute the characteristic function of Y and take its inverse Fourier 
transform to obtain the density function f (y) ,  noted respectively hy fu, fb and f,. 
The results are given in table 1, and in figure 1. 

The various distributions can be well understood from (7). When a configuration 
is seeded at site j ,  the total number of topplings s is small if j is close to 1 or to L, 
while a value of j around L/2 gives a maximum number of topplings. The binomial 
distribution favours large values of s and suppresses small values of s. Therefore in 
the thermodynamic limit, when compared to the uniform distribution, the binomial 
smoothes out the logarithmic singularity at y = 0 of fu and takes the cuwe up 
at y = a, the result being just a uniform distribution, fb(y) = 41f,,,/41(y). The 
quadratic distribution does the converse, and so fq keeps the singularity at y = 0, 
hut at y = i, it vanishes much faster than fu, namely fq(y) - 4( 1 - 4y)3/2. 

We have also considered a deterministic seeding at j = 1, that is pj = 6j,l, which 
puts an exaggerate weight on the small values of s. In fact, so much that the maximum 
value smaX is L instead of L2/4. This combined with the value (jB)wdinb = 1 (no 
scaling in L )  produces a uniform distribution on [0, 11 for Y = IimL-- S /  L. 

We now turn to the avalanche duration distributions. The duration will be defined 
as the number of times the lattice needs to be swept before the sandpile settles in 
a stable configuration. If the seeding at j produces no toppling at all (2, = 0), the 
duration is zero. Tike for instance L = 6 and the configuration (l,l,l,l,O,l) seeded at 
j = 2. The duration is 4 (1 ,2 ,1 ,1 ,0 ,1 )  - (2 ,0 ,2 ,1 ,0 ,1 )  - (0 ,2 ,0 ,2 ,0 ,1)  + 

It is easy to see that if the recurrent configuration oLt'-'c' is seeded at site j ,  
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~ L ~ , ~ , ~ , L ~ ~  + ( 1 , 1 , 0 , 1 > L 1 ) .  

the duration d, of the avalanche is (0 < 1 < L )  

Let D be the random variable giving the duration of an avalanche per added 
particle (in the space of recurrent configurations). We first work out the case of a 
uniform seeding distribution, pj = 1 / L .  From (17), D takes its d u e s  between 0 
and L, with a probability given hy 

It is straightfoward to compute the moments of D. For large m, they scale 
like Lm: (Dm) = 2/ (  m + 2) L" + . . ., which suggests defining the renormalized 
variable T = IimL+- D / L .  The values of T run Over [0,1] and its moments are 
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(7'") = 2/( m + 2). We then find that the density function g , ( t )  of T is linear 

2t for 0 <  1 < 1 
otherwise. 

Unlike the distribution for the number of topplings, the duration distribution is 
not very sensitive to the seeding distribution, as we might have expected. Similarly 
to (15), the moments of the finite L variable can be computed for a general seeding 
A:".Ll...*:,... ..2*L *I.̂ 
"W,,,""LI",L, w.111 L l l G  I G D U I L  

1 
(B"+,(L) + B,+l(L + 1) 

- & + l ( j )  - B,+l(L + 1 - j N y e d i n g .  

( L  + l ) (m + 1) (D"') = 

(20) 

In the large L limit, the equation (20) simplifies to (D") = 2Lm/(7n + 1)[1- 
(jm+')ydiDg] in case the seeding distribution is symmetric around the centre of the 
lattice, p, = P ~ + ~ - , .  From the moments of pj displayed in (16), we obtain the 
moments for the renormalized variable T = IimL-- D/ L 

(21) 

The corresponding density functions g b ( t )  and g q ( l )  are polynomials in 2 ,  constant 
for g, and cubic for 9,. "ey are shown in table 1 and in figure 2. 

Finally, it is interesting to compare the distributions computed in the space of 
recurrent configurations with the analogous quantities, wmputed in the space of all 
stable configurations, for which each site assumes the values 0 and 1 with equal 
probability and independently of the other sites. We restrict ourselves to a uniform 
seeding distribution. 

We omit the details and merely give the results. The variables S and D are 
defined as earlier. The striking difference is that even when L goes to infinity, the 
moments of S and D remain finite. For example the first moment of S reads 

4 L + 42-L, (S) = 2 -  - + 7 
L 

As a consequence, we can define Y = IimL-- S and T = 1imL-- D, without 
any renormalization, so that in the limit, the random variables Y and T remain 
discrete and take their values in 2,. We find that the density function of Y is 

for t = 0 
for 1 2 1. C' at 2-1 

Prob [T = 11 = 
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Due to its arithmetic nature, the function Prob[Y = y] has no asymptotic 
behaviour. Hence we consider the distribution function Prob [Y 2 n], and the 
Same function for T.  We find 

Prob 

and 

Prob [T 2 n] - $ze-"lnz n large. 

It is intriguing to note that they are close to satisfy the scaling relation T = fl. 
In conclusion, it is somewhat remarkable that the distributions show non- 

trivial functional form, despite the simplicity of the model. We found. that the 
duration distribution is not very sensitive to the seeding distribution, unlike the mass 
distribution which is more sensitive. This can be compared with the two-dimensional 
situation where neither distribution is expected to be very dependent on the seeding 
~71. 

While completing the manuscript, we received a work by F Pythoud [14] which 
partly overlaps the results presented here. We would like to thank Deepak Dhar 
for comments on the manuscript and for sending us [14]. PR also wishes to thank 
Anatoly Patrick for helpful discussions. 
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